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Abstract—In the antenna design process, predicting return loss
via electromagnetic (EM) simulation is crucial for understanding
the antenna’s behavior. As EM simulation can be time-intensive,
its role is often confined to simulating the response, and not
extended to proposing alternative designs. To address this, we
propose a novel artificial intelligence (AI) framework for antenna
design. It comprises a regressor for accurate and fast response
prediction, a generative designer for proposing a vast number
of new designs that meet users’ requirements, and an explainer
for analyzing the impact of design parameters. Application of
the proposed AI framework to the design of planar multiband
antennas has demonstrated its accuracy and capability.

I. INTRODUCTION

The adoption of neural network as surrogate models for
numerical simulations and inverse design of electromagnetic
(EM) devices has gained popularity [1], [2]. However, artificial
intelligence (AI) methodologies in EM device simulation and
design are explored separately but are yet to be comprehen-
sively integrated. In [1], for example, a sparsely connected
neural network is trained as a surrogate model for antenna
performance within a general multi-objective evolutionary
design optimization algorithm. However, this framework relies
solely on an optimization space search approach on random
design without utilizing existing designs. The randomness in
design parameters potentially leads to less realistic results and
a more time-intensive process in generating diverse designs. In
[2], a Wasserstein Generative Adversarial Network (WGAN)
[3] is trained for inverse design, proposing new candidate
solutions. However, the class labels indicating antenna quality
are embedded as inputs, making their impact on the output
less clear through the neural network. Moreover, since the
model does not generate predictive labels, it is not explicitly
controlled by class labels, making it challenging to evaluate
the performance of the generated data.

To this end, we introduce a novel approach to the antenna
design process, employing WGAN to automate the generation
of new antenna design parameters by training with human-
designed antennas. The generative designer meets specific
multiband frequency requirements, regulated by a classifier.
The classifier with a regressor assesses the performance of
geometries produced by the generator, enhancing the reliability
of the generative model. Moreover, we analyze how each
design parameter influences the antenna’s performance using
the SHapley Additive exPlanations (SHAP) values [4]. The
proposed approach more comprehensively integrates into the
antenna design process the AI-enabled abilities of predicting

This work was supported by Rapid-HI (Heterogeneous Integration) Design
Institute (an Elmore ECE Emerging Frontiers Center) and an NSF Future of
Semiconductors (FuSe) grant under award No. 10002201.

the response of the antenna, generating reliable designs, and
explaining the contribution of each design parameter.

II. GENERATIVE ANTENNA DESIGNER

A. Regressor
Prior to initiating the design process, we first pre-train a

neural network regressor to substitute EM simulations for the
antenna design. This regressor, denoted as F , is employed to
predict the S11 curves of newly generated designs; see Section
II-B for their generation. We employ the antenna’s complex
input impedance as a prediction target, thus accounting for
both the magnitude and phase of return loss. This approach
diverges notably from some of the existing methods [1],
[5] that focus solely on the magnitude, leading to a more
comprehensive impedance characterization of the antenna and
offering precise regression result.
B. Designer

The designer’s objective is to generate new design param-
eters illustrated in Fig. 1(a). The generated designs have an
adequate bandwidth at resonant frequencies, demonstrating
feasibility comparable to the actual data, while also displaying
a necessary level of diversity. We propose a WGAN-based
designer consisting of critic and generator as demonstrated
in Fig. 1(b). In the design step, the critic and generator
adversarially train the real antenna design samples, optimized
by gradient descent. Upon training completion, the generator
provides a feasible antenna design tailored to user require-
ments, offering a vast number of design suggestions.

1) Critic: The critic is composed of three different neural
networks, a discriminator (D), a classifier (H), and a frozen
regressor (F ). The discriminator distinguishes between real
and artificially generated design parameters. It is trained by
minimizing the objective function

LD = − 1

N

( N∑
i=1

D (xi)−
N∑
i=1

D (x̂i)
)
,

where xi and x̂i are the real and generated design parameters
respectively, D is a discriminator network, and N is the mini-
batch size denoting the number of real and generated samples
provided during training. The higher the discriminator’s out-
put, the more likely it predicts the data to be real.

The classifier H aims to assess whether the response from
the generated design parameters achieves the desired band-
width by minimizing the following binary cross-entropy loss

LH = − 1

N

N∑
i=1

(y′i log ŷi + (1− y′i) log ŷi) ,



Fig. 1. Framework and validation of the proposed generative antenna designer.

where y′i is the binary label obtained with the predicted Ŝ11

curve from the regressor F , ŷi = σ (H (x̂i)), and σ is the
sigmoid function. Specifically, given a user-specified resonant
frequency set ω and Ŝ11 = F (x̂i), y′i is obtained by

y′i =

1 if maxf
({∣∣∣Ŝ11

∣∣∣
f∈ω

})
≤ −10 dB,

0 otherwise.

2) Generator: Generator G, taking Gaussian noise
{zi}Ni=1 ∼ N (0, 1) as inputs, aims to generate design param-
eter combinations x̂i = G(zi) that are realistic, bandwidth-
optimized, and diverse. The objective function of G is struc-
tured to align with these three goals through three components.

First, to generate realistic parameters, G seeks to maximize
the discriminator score, thereby deceiving the discriminator.
Second, the operative bandwidth of the design parameters is
ensured by maximizing the classifier’s score; this aligns with
the bandwidth optimization goal. Third, to mitigate the risk of
mode collapse, in which generative models like G converge to
a few repetitive sets of outputs, a penalty term is introduced.
Consequently, the objective function for G is to minimize

LG = − 1

N

( N∑
i=1

D(G(zi)) +H(G(zi))

+
1

N − 1

N∑
j=1,i̸=j

max(0, 0.5− ∥G(zi)−G(zj)∥2)
)
.

The generator is able to provide many new designs operating at
user-specified resonant frequencies. An example is presented
and validated by numerical simulations (see Fig. 1(c)), demon-
strating the efficacy of the proposed design method.

III. EXPLAINING THE IMPACTS OF DESIGN PARAMETERS

To gain further insights into the importance of each design
parameter on antenna performance, we employ SHAP value
analysis on the classifier H , a measure of how much each
feature contributes, either positively or negatively to the clas-
sifier’s outcome. The SHAP value is defined as:

SHAPk(H) =
∑

S⊆d\{k}

[
|S|!(|d|−|S|−1)!

|d|! ·
(
σ(H(XS∪{k}))− σ(H(XS)

)
)
]
,

where d is the set of all design parameters, S is all possible

Fig. 2. SHAP value of design parameters. (Darker color indicates a larger
value in length (mm). Dots with positive SHAP values signify positive con-
tribution towards an effective antenna design in the classifier H . Conversely,
dots with negative SHAP values indicate an opposite effect.)

subsets of d without parameter k ∈ d, and XS denotes a
dataset where only parameters in S are given.

A visualized SHAP value analysis for the generative antenna
design is shown in Fig. 2. The similarity in SHAP values be-
tween the real and generated data indicates that the generated
data possesses feature importance and properties akin to the
actual data. Furthermore, the SHAP values of each dot signify
the impact of each design parameter on achieving an effective
antenna design. For example, a smaller g (a lighter dot) and
a larger l4 (a darker dot) exhibit positive SHAP values, signi-
fying their contributions to the antenna’s operative bandwidth
at resonant frequencies. Additionally, a narrow range in the
SHAP values for a parameter, such as l and l2, indicates that
it has minimal influence on the classifier’s decision about the
antenna’s functionality at resonant frequencies, implying that
it is less important in the overall antenna design.
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