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Abstract

The encoder-decoder structured Convolutional Net-
works(CNNs) are a general approach for semantic segmen-
tation tasks. However, it is hard to capture precise bound-
aries of objects, and the boundary information loss is in-
evitable since the input image is contracted to small-sized
features through the encoder and then extended as the origi-
nal size through the decoder. To tackle this problem, we pro-
pose a whole new approach, Superpixel-based Graph Con-
volutional Network, not containing any pooling layer thus,
preserving the shape of a target object. At first, the super-
pixel algorithm segments an image into plausible clusters
with RGB values of pixels. Then, Graph Convolutional Net-
works(GCNs) predict an assigned label of each superpixel,
regarding them as a node of a graph. In other words, our
GCN framework conducts a node prediction for each image
converted as a superpixel graph. We utilize two graph con-
volutions to capture the semantics of nodes, spectral convo-
lutions with topology adaptiveness and spatial convolutions
with weighted node sampling. Also, we propose a novel
loss function, Superpixel Penalty Loss, to address imbal-
ance problems of the classes and the size of superpixels.
Experiments are performed on the UAVid dataset, with has
ambiguous boundaries in their target objects. Although the
proposed method does not reach the state-of-the-art perfor-
mance, it shows comparable ability to classify each pixel’s
label and expands the concept of the GCN combined with
superpixel into semantic segmentation. GitHub Code

1. Introduction
Deep Neural Networks have achieved significant ad-

vancements in semantic segmentation on account of recent
improvements. Many vision-based applications, including
autonomous driving, remote sensing, and medical image
analysis, benefit from semantic segmentation. FCN[11]

Figure 1. Example of graph generation via superpixel. Each super-
pixel cluster is treated as a node of a graph. Each node represent a
diminutive region containing color and spatial information and its
class labels.

proposed an end-to-end and pixels-to-pixels method on se-
mantic segmentation, using deconvolution[14] and skip-
connection. However, due to their shallow upsampling lay-
ers of FCN, the ability to classify pixels was insufficient,
and fragmentation occurred. U-Net[16] solved this problem
by adopting deep encoder-decoder architecture. Especially,
scene segmentation[25, 26, 20] is a difficult but important
endeavor to divide the categories to each pixel in scene
pictures. It’s vital to enhance feature similarity between
objects while maintaining feature differentiation amongst
them. Due to its huge resolution, precise segmentation is
a prominent issue. It is hard to capture precise boundaries
of objects, and the boundary information loss is inevitable
since the input image is contracted to small-sized features
through the encoder and then extended as the original size
through the decoder

To tackle this problem, we adopt both Superpixel and
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Figure 2. All the train process are conducted under the graph state. Graphs are generated as a preprocessing with superpixel map. Also,
same superpixel mapping are applied for the ground truth image to generate ground truth nodes.

Graph Convolutional Networks(GCN) instead of 2D CNNs.
Superpixel is one of the commonly used approach to seg-
ment an image into a number of clusters by grouping pix-
els into perceptually meaningful atomic regions. SLIC[1]
adopts k-means clustering to group nearest pixels w.r.t both
color and spatial distance, by converting CIELab color
space. SSN[7] first suggested deep learning based super-
pixel method, defining soft-association map, also called dif-
ferentiable SLIC. SFCN[23] extend the concept of SSN
by adopting FCN[11] as prior step before obtaining super-
pixel association map. Also, LSN-Net[27] suggested non-
iterative lifelong learning strategy with unsupervised CNN,
while reducing computation complexity. Unlike semantic
segmentation, superpixel does not require significant con-
traction of image. Therefore, superpixel is suitable to main-
tain a boundary information of relatively small object or
ambiguous edges, which are easily disregarded in encoder-
decoder structure. However, Superpixel cannot classify the
label of each cluster though it can segment images success-
fully.

To compensate this problem, we also adopt GCN to cap-
ture relational information of objects, i.e. Superpixel. GCN
integrates the local information of neighborhood node in-
cluding their RGB values and geometrics. The objects and
their surrounding information can be expressed as a graph
whose nodes contain color and spatial information each Su-
perpixel, whereas the edges express the spatial relation-
ship between the Superpixel. In this paper, superpixel is
used as a preprocessing of our framework to convert the
grid-structured image into graph-structured image. In other
words, our GCN framework conducts a node prediction for
each image converted as a superpixel graph.

2. Preliminaries

2.1. Graph Convolutional Network

GCN is a network that has been applied to graph-
structured data such as road networks, protein-protein in-
teraction, and social networks. Within various kinds of so-

Figure 3. Each convolutional layer aggregate neighborhood node’s
embedding information Nn, k to the target node Nt.

cial and physical phenomena that can be interpreted with
the graph structure, GNN efficiently captures the relations
between nodes and edges using their given attributes. To up-
date the state of each node and to output the desired feature
from a graph, GNN mainly adopts convolutional operation,
which shares the same properties with CNN such as local
connectivity, learnable filters, and use of multi-layer. GCN
can be categorized by a spectral and spatial convolutional
network.

2.2. Spectral Graph Convolution

Spectral graph convolution[8, 2, 3] uses spectral filters
based on a Fourier transform of graph signal, an eigen-
decomposition of graph Laplacian matrix. However, it re-
quires an entire and fixed graph since the graph Lapla-
cian depends on the overall graph structure. Thus the
model cannot be adapted on newly generated nodes which
means the change of the original graph structure. To over-
come its limitation, modification of previous networks such
as TAGCN[4], SGCN[22], and APPNP[9] have been pro-
posed, which are adaptive to the topology of arbitrary graph
and have lower computational complexity.
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2.3. Spatial Graph Convolution

As opposed to this transductive learning, spatial graph
convolution is inductive learning which can be generalized
to previously unseen data. Spatial graph convolution[13]
achieves its inductiveness by convolving graph with spatial
filters while aggregating information of locally connected
neighborhoods. Spatial convolutional networks learn a node
embedding function only reflecting the node’s local neigh-
borhood instead of referring entire graph, the model suc-
cessfully works on unseen graphs or continuous changes in
the graph. GraphSAGE[5] randomly samples target nodes
and their fixed number of neighborhoods. Then these sam-
pled subgraphs go through a learnable aggregator sharing
the same weights. Attention based spatial convolutions,
such as GAT[18], AGNN[17], have been also proposed to
dynamically adjust weights of neighbor nodes.

3. Proposed Method
3.1. Superpixel Graph Generation

Prior to the graph generation, superpixel segmentation is
conducted as a preprocessing. Each superpixel represents
a group of pixels containing similar spatial and color in-
formation. Superpixel is very efficient method to segments
region sensitively, retaining boundary well, while each clus-
ter includes information about original image, Cmean and
Pmean,

Cj,mean =

∑Nj

i (R,G,B)i
Nj,pixel

(1)

Pj,mean =

∑Nj

i (x, y)i
Nj,pixel

, (2)

where Nj,pixel is the number of pixels in j-th cluster.
Each superpixel cluster is allocated as a node V of a

graph G = (V,E), which have 5-dimension features in ev-
ery nodes hi,j = [Cmean|Pmean]. The undirected edges
E in a graph are simply generated as adjacent relations be-
tween neighborhood nodes.

In this paper, we adopts SFCN[23] rather than SLIC [1]
to obtain more precise boundaries to distinguish adhering
objects.

3.2. Superpixel Penalty Loss Function

In this paper, we propose a novel Superpixel penalty loss
which is designed to address two main problems derived
from Superpixel graph generation and node classification.
The first is the extreme imbalance between node classes
(e.g., Background versus Person) in a graph. In this case,
directly training a GNN classifier with a graph would under-
represent samples from those minority classes and result in
sub-optimal performance. The second is that Superpixels
have a different number of pixels in each Superpixel and

they do not carry the information about the amount of pix-
els in each node. To mitigate these problems, we introduce
Superpixel penalty loss that adds the class balanced and Su-
perpixel weights to cross-entropy loss (CE) for node classi-
fication. The class balanced CE in Superpixel penalty loss
is defined as:

lk = −wkyk · log exp(xk,yk
)∑C

c=1 exp(xk,c)
(3)

where x is the input, y is the target, w is a class balanced
weight, and C is the number of class. wk can be calculate
as

wk =
N − nk

N
(4)

where N is total samples and n is the number of sam-
ples in each class. Following the above equation, the class
balanced weight gives a more penalty to rare samples than
others. After calculating losses of class balanced CE in each
node, we apply the Superpixel weights to the losses:

SPLk = sk · lk (5)

where SPLk is Superpixel penalty loss in each node k.
sk is a superpixel weight in each node k, as follow

sk = − 1 + ϵ

log pk + ϵ
(6)

where pk is the normalized number of pixels in a Super-
pixel generated into each node k. ϵ is the constant value for
numerical stability to avoid zero division error, set as 10−5.
We impose a greater penalty for nodes generated by Su-
perpixels containing more pixels than other nodes. Finally,
Superpixel penalty loss is calculated by

SPL =
1

N
([l1, · · · , lN ]T · [s1, · · · , sN ]) (7)

3.3. Spectral Approach

3.3.1 Topology Adaptive Graph Convoloution Layer

Topology Adaptive Graph Convoloution Net-
work(TAGCN)[4] is one of the simplest convolutional
layer for the graph-structured data. Based on the GCN[8],
TAGCN can adapt higher-order relations between K-hops
nodes. Each k ∈ {1, 2, · · · ,K} means a k-size learnable
graph convolution filter, likewise a squared convolution
filter of grid structured data. An output embedding of a
vertex is the weighted sum of these filter’s outputs.

X ′ =
K∑

k=0

(D− 1
2AD− 1

2 )kXΘk, (8)

where A denotes the adjacency matrix, Dii =
∑

j=0 Aij

is diagonal degree matrix, Θk denotes the linear weights to
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Figure 4. The example results of our method. (a) and (g) are the RGB images from UaVid dataset and the corresponding ground truth anno-
tation. (b), (c), (d), (e), and (f) are the predicted segmentation maps of GCN with SLIC+SPL, SFCN+CE, SFCN+wCE, SFCN+Sampling,
and SFCN+SPL, respectively.

Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
U-Net[16] 40.3 70.7 63.5 11.9 67.2 35.5 00.0 47.5 40.9
BiSeNet*[24] 64.7 85.7 61.1 63.4 78.3 77.3 17.5 48.6 61.5
BANet*[21] 66.6 85.4 80.7 52.8 78.9 62.1 21.0 69.3 64.6
Ours (SPL) 50.5 79.9 64.9 35.1 67.4 48.4 8.4 40.9 49.4

Table 1. The experimental results on the UAVid dataset. Asterisks of BANet[21] and BiSeNet[24] means the result mentioned in each
paper.

sum the results of different hops together. TAGCN layer ex-
tracts both vertex features and correlation strength between
vertices.

3.3.2 Multi-layer Loss

As the model gets deeper, GCN suffers from over-
smoothing probelm[10, 15], which is an main obstacle for
GCN to have richer representations. Since GCN aggregates
the features of adjacent nodes inherently, stacking more lay-
ers lead to aggregating more information through further
hops. Thus, it results in convergence of node representa-
tion, which is called over-smoothing, and it is why many

research on GCN have shallow networks. However, more
layers still achieve better performance, we apply the multi-
layer loss to TAGCN to handle the over-smoothing problem
and to make deep GCN.

Loverall =
1

3
(SPLh4 + SPLh8 + SPLh12) (9)

where SPLhi
denotes superpixel penalty loss at ith hidden

layer, which will be further explained later. Proposed multi-
layer loss is the average of loss computed at intermediate
convolutional layers after passing each MLP layers. In our
experiment, we extract intermediate loss from 4th, 8th, 12th
graph convolutional layers.
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3.4. Spatial Approach

3.4.1 GraphSAGE with Weighted Node Sampling

To handle the class imbalance problem and to enhance the
generality of networks, we adopt the GraphSAGE networks,
which sample subgraphs and aggregate the node informa-
tion. Unlike other node classification is conducted on a sin-
gle graph, our model is applied to multiple graphs at the
same time by constructing one batch graph from multiple
input images while maintaining its inductiveness. There-
fore, we first construct one large graph from multiple graphs
without having any connection between each graph. Then
we sample target nodes with different weight from this
batch graph. Also, we sample the fixed number of neigh-
bor nodes in each layer, not the entire neighbor nodes. With
these approach, GraphSAGE networks have the ability to
get more subgraphs on smaller class as well as encourag-
ing generality of model by dropping some edges between
nodes.

4. Experimental Result
4.1. Dataset

In this study, extensive experiments were conducted to
evaluate the proposed method for UAVid dataset[12]. The
UAVid dataset consists of 42 high-resolution sequential im-
ages in total capturing the urban scenes from an unmanned
aerial vehicle(UAV), with 8 classes. Each sequence has 10
images. In our experiments, the sequential data would be
considered as an individual data. Moreover, The sequence
are split into 20 sequence for train, 7 sequence for valida-
tion, and 15 sequence for test. However, the test subset
does not include ground truth data. So we use validation
subset as test subset. Validation data for training will be
obtained by randomly splitting from training data for every
epoch. Therefore, the experiments are conducted on 200
images for training with randomly chosen 20% validation
subset, and 70 images for test, each of size 4096×2160 or
3840×2160. Also, we modified train subset images into
2048×2048 cropped image, allowing overlapping.

4.2. Implementation

We are conducting two types of experiment; Graph-wise
and Node Sampling. Both methods use same graph dataset
which is made by preprocessing containing node features,
edge relations, node labels. As each image is converted to
corresponding graph, graphs can allocated batch being re-
garded as images. A GNN model train the node features
considering the edges around them, and final node embed-
ding is obtained. This method is simply same with semantic
segmentation, just replacing encoder-decoder architecture
to graph network.

On the other hand, we have tried to adopt Node Sam-

pling. Entire dataset is regarded as a single large graph, and
target nodes are randomly sampled to train as same num-
ber as batch size. Although this might not a efficient way
to train when it comes to the time cost, it allows model to
oversample the scarce classes giving more opportunity to be
trained them. The training procedure adopts early stopping
strategy.

For Graph-Wise model, 12 TAGCN layers with 256
channels are used. For Node Sampling model, Graph Sage
is adopted as a convolutional filter, with same number of
layer and channel. Initial learning rate is lr = 0.001 with
multi-step learning scheduler. Adam optimizer are used
with decay 0.0001. All nodes are trained for the Graph-
Wise model with Dropout rate 0.5, while only three neigh-
bor node are sampled for all layers in the node sampler.

4.3. Evaluation Metric

Node accuracy[6] is used in Node Classification tasks of
GNNs. However, although the proposed approach adopts
GNNs, the node accuracy does not reflect perfectly the
performance of semantic segmentation. Instead, mIoU is
mainly used to evaluate the performance of given networks.
The Jaccard Index(mIoU) is the area of overlap between the
predicted segmentation and the ground truth divided by the
area of union between the predicted segmentation and the
ground truth. To calculate the intersection and union, we
invert graph to image again. In our experiments, even if a
model could get further node accuracy, the mIoU score does
not increased proportionally.

4.4. Result Analysis

To verify the contribution of SPL, SFCN[23], Node Sam-
pling, and TAGCN[4], we have conducted several experi-
ments. The results are shown in Table 2 and Table 3.

In terms of superpixel methods, SFCN outperforms
SLIC[1]. Although node accuracy of SLIC was higher than
SFCN in our SGCN, the overall mIoU score was poor since
SLIC is not able to capture the precise boundaries of ob-
jects. The SPL also outweigh other loss function. Weighted
cross entropy loss considers the imbalance in the number
of class. In addition to that, SPL reflects the size of each
superpixel. Also, we expected Node Sampling to obtain en-
hanced results especially for small objects such as human
and car. However, the results show that Node Sampling is
not helpful to segmentation, so Graph-wise method is se-
lected.

On the other hand, we have adopted various convolu-
tional filters such as APPNP[9], SGCN[22], CHEBConv[3],
GraphSAGE[5], and TAGCN[4]. Among the various con-
volutional network and loss functions, our final frame work
achieved 49.4% of mIoU score, as shown in Table 2 and Ta-
ble 3. Moreover, the final was better than U-Net[16]. How-
ever, we couldn’t reach the state-of-the-art performance
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Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
SFCN + SAMPLING 33.9 64.6 45.0 5.7 58.2 37.4 0.0 10.3 31.9
SLIC + SPL 48.5 78.4 62.7 30.3 67.3 47.3 4.7 32.9 46.6
SFCN + CE 46.2 76.8 57.9 26.8 65.1 45.0 5.6 28.4 44.0
SFCN + WCE 50.1 79.4 63.9 38.8 67.3 47.9 8.5 35.3 48.9
SFCN + SPL 50.5 79.9 64.9 35.1 67.4 48.4 8.4 40.9 49.4

Table 2. Ablation study for various loss function and training strategy on the UAVid dataset.

Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
APPNP[9] 23.6 48.8 35.8 1.2 47.7 25.7 0.0 7.0 23.7
SGCN[22] 26.5 54.2 32.6 5.8 50.8 30.1 0.0 5.1 25.6
CHEB[3] 12.4 48.4 24.0 6.3 51.2 31.0 0.0 12.8 23.3
GraphSAGE[5] 30.4 61.8 43.7 18.3 57.5 35.3 1.2 21.1 33.7
TAGCN[4] (Ours) 42.5 73.9 53.9 23.9 64.6 42.7 1.4 21.3 40.5

Table 3. Ablation study for various convolutional methods with same architecture on the UAVid dataset, with 10 layers and 256 channels.

such as BANet[21] and BiSeNet[24], as shown in Table 1.
More experiments are necessary to improve the overall per-
formance and comparison for other semantic segmentation
methods such as HRNet[19] and ShelfNet[28].

5. Conclusion
Superpixel GCN can be applied for semantic segmenta-

tion successfully. However, its performance couldn’t reach
the state-of-the-art. We suppose that there might be two rea-
sons for the limitation. At first, we adopt GCNs with simple
structure, including only batch normalization and ReLU,
without any functional module and blocks. Secondly, there
are only few nodes for some classes. We are looking for-
ward to developing improved structure to solve these prob-
lems in the future. Also, superpixel procedure is used as
data preprocessing in the proposed method. We are plan-
ning to insert the superpixel training procedure to the entire
architecture, achieving end-to-end Superpixel-based GCN
model.

Although the performance of proposed approach has
some limitations, our achievement is very meaningful in
this field. It is a novel methodology expand the concept of
Graph-based machine learning into semantic segmentation
tasks. There are numerous possibilities to be improved with
various auxiliary function. Both research area, Superpixel
and GCNs, will contribute to Superpixel-based GCN, while
state-of-the-art methods in each field can be adopted easily
for our approach. In addition, the proposed method can be
used on various dataset and field, including medical image,
remote sensing, autonomous driving, and manufacturing.
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[3] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in neural informa-
tion processing systems, 29:3844–3852, 2016. 2, 5, 6

[4] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura,
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