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Abstract
Adversarial attacks pose a significant threat to
machine learning models, especially those with
complex decision boundaries such as decision
trees. To enhance the robustness of decision trees
against adversarial attacks, this paper proposes a
novel data augmentation approach, Adaptive An-
chor Data Augmentation (AADA). AADA uses
anchors with adaptive radii as reference points
to guide the decision tree to learn smoother deci-
sion boundaries. We evaluate the effectiveness
of AADA through experiments on six bench-
mark datasets and five baseline models, showing
that decision trees trained with our framework
achieve better accuracy on adversarial samples
while maintaining high performance on the orig-
inal data. Furthermore, we demonstrate that our
approach improves the smoothness of decision
boundaries, as measured by the local Lipschitz-
ness. Our results suggest that AADA is an effec-
tive strategy to enhance the robustness of decision
trees against adversarial attacks while maintaining
high accuracy on the original data.

1. Introduction
Decision trees have been widely used in various fields, such
as finance, healthcare, and engineering, due to their inter-
pretability and ease of use. One of the key advantages of
decision trees is their sensitivity in catching complex deci-
sion boundaries. Unlike linear models, decision trees can
capture nonlinear relationships between features, allowing
them to handle complex datasets more effectively. Further-
more, decision trees still outperform deep learning models
for tabular datasets, despite the recent advances in deep
learning. However, a drawback of decision trees is their
vulnerability to adversarial attacks. Since decision trees
create complex decision boundaries, they are more suscep-
tible to adversarial samples that are specifically designed
to mislead the classifier. Therefore, many suggestions have
been made to improve the robustness of decision trees, such
as examples In this paper, we propose a data augmentation
approach, Adaptive Anchor Data Augmentation (AADA), to
enhance the robustness of decision trees against adversarial

Figure 1. (a) Complex decision boundaries for decision trees. (b)
Decision boundaries with the proposed method. The different color
means different class label, and the colored background means
the decision region separated by decision boundaries. In figure
(b), arbitrary samples are chosen as center points of anchor. Each
anchor consists of p additional data points distributed uniformly as
ball-shape from center point. The radius of each ball is determined
by the half of the minimum distance between a center point and
the closest point from the center having different label.

attacks. The anchors are created around randomly selected
samples as center points, where the radius of each anchor is
determined by interclass distance; the distance to the closest
point of the opposite label. The anchors guide the decision
tree to learn smoother decision boundaries, which are less
likely to be affected by adversarial samples.

We evaluate the effectiveness of AADA through experi-
ments on several benchmark datasets. The experimental
results show that decision trees trained with our framework
achieve better robustness against adversarial attacks, while
maintaining high accuracy on the original data. Moreover,
we compare the smoothness of decision boundaries between
models with and without our approach.

In conclusion, our proposed approach provides a practical
and effective way to enhance the robustness of decision
trees against adversarial attacks. While there is no universal
method to improve the robustness of decision trees, our
approach offers a new perspective on data augmentation that
leverages the power of anchors to create smoother decision
boundaries.



Adaptive Anchor Data Augmentation for Robust Decision Tree

2. Related Work
Decision trees have been widely used in various applica-
tions(Brutzkus et al., 2020; Blanc et al., 2020), including
the medical field(Azar & El-Metwally, 2013; Lavanya &
Rani, 2011), due to their interpretable nature and ability
to handle both categorical and numerical features(Fiat &
Pechyony, 2004). Recent works have proposed decision
tree-based methods for tasks such as diagnosis prediction
and treatment recommendation(Shehab et al., 2022). More-
over, decision trees have shown better performance than
deep learning models on some tabular datasets(Shwartz-Ziv
& Armon, 2022; Grinsztajn et al., 2022).

However, decision trees are vulnerable to adversarial attacks
that manipulate the input data to mislead the model’s pre-
diction. Several works have proposed decision tree-specific
attack methods, such as (Cheng et al., 2020; Papernot et al.,
2016) and (Kantchelian et al., 2016), which can generate
adversarial samples that cause misclassification. To mitigate
this issue, many robust decision trees are suggested such
as BBM-RS(Moshkovitz et al., 2021), GROOT(Vos & Ver-
wer, 2021), GBDT(Chen et al., 2019a), and ROCT(Vos &
Verwer, 2022) that are more resilient to adversarial attacks.

Data augmentation is a widely used technique to enhance
the generalization ability of machine learning models. Sev-
eral works have proposed data augmentation techniques
for decision trees, such as(Chawla et al., 2002), (Tanaka &
Aranha, 2019), and (Ionescu et al., 2022). These methods
can improve the model’s performanc in terms of accuracy.
However, to the best of our knowledge, no existing work
has focused on using data augmentation to enhance the
robustness of decision trees against adversarial attacks.

3. Preliminaries
3.1. Zeroth Order Optimization Attack

Zeroth Order Optimization(ZOO) attack(Chen et al., 2017)
is a black-box attack which can be adopted to any classi-
fiers by using approximate gradient with a finite difference
method. The untargeted objective function is defined as

f(x) = max{log[F (x)]t0 −max
i̸=t0

log[F (x)]i,−κ} (1)

where F is the output of a classifier, t0 is the true class
label for x, and maxi̸=t0 log[F (x)]i represents the largest
probability among other classes. Eq.1 can be optimized by
any optimizer such as SGD, ADAM(Kingma & Ba, 2014),
or Newton’s method.

To obtain the gradient and Hessian estimate, Chen et al.

(2017) adopts the symmetric difference quotient.

ĝi :=
∂f(x)

∂xi
≈ f(x+ hei − f(x− hei)

2h
(2)

ĥi :=
∂2f(x)

∂x2
ii

≈ f(x+ hei − 2f(x) + f(x− hei)

h2
(3)

where h is a small constant, h = 0.0001 and ei is a standard
basis vector. Although ZOO attack is simple and slower
than first-order method, it’s sufficient to attack with very
high success rate(Liu et al., 2020). Moreover, as the number
of class label is two in binary classification, there’s no big
difference between the targeted and untargeted ZOO attack.
Chen et al. (2017) suggested that ZOO attack with ADAM
outperforms that with other optimizer.

4. Proposed Method
4.1. Adaptive Anchor

We create Adaptive Anchors as a data augmentation for train
data X ∈ RN×d to achieve robust decision trees against
adversarial attack. nc number of arbitrary data points xc,i

∀i = {1, · · · , nc} are selected as a center of an anchor,
which consists of p uniformly distributed data points for
each anchor with radius ri, i.e. ℓ2-ball such that

A(xc,i, ri) = {x ∈ Rd : x ∼ U(∥x− xc,i∥2 ≤ ri)} (4)

where |A(xc,i, ri)| = m. The data points in each anchor
have the same label with the center. The radius ri is adap-
tively determined by the half of the minimum interclass
distance di, i.e. distance between a center of anchor and the
closest point having a different class with the center point,

ri =
1

2
di =

1

2
min
yi ̸=yj

(∥xc,i − xj∥2),∀xj ∈ X (5)

In short, 5 allows the radius of anchor near the decision
boundary be small, and the one far from the decision bound-
ary be large, making a classifier be less sensitive to adver-
sarial attack.

4.2. Training with Adaptive Anchor against adversarial
attack

In training step, we choose γ|X| number of samples to
make them the centers of anchor, i.e. nc = γ|X| where γ
is a hyperparameter determining the ratio of center point.
Figure.1 shows the concept of the proposed AADA.

A decision tree f(X) is trained with augmented data X′

such that

X′ = X ∪
nc⋃
i=1

A(xc,i, ri). (6)

Based on the trained f(X), an adversarial attack is applied
to test dataset, Xtest to create adversarial test samples to
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Algorithm 1 Adaptive Anchor Data Augmentation against Adversarial Attack
Require: Training set (X,Y), hyperparameter γ and p, Adversarial attacker
Ensure: Prediction result on test dataset Ŷtest

nc ←− γ|X|
for ı ∈ {1, · · · , nc do

ri ←− 1
2 minyi ̸=yj (∥xc,i − xj∥2),∀xj ∈ X.

A(xc,i, ri)←− {x ∈ Rd : x ∼ U(∥x− xc,i∥2 ≤ ri)}, where |A(xc,i, ri)| = p.
end for
X′ ←− X ∪

⋃nc

i=1A(xc,i, ri).
Train a classifier f with augmented training dataset (X′,Y′).
X̃test ←− Attack(Xtest,Ytest, f(X))

Ŷtest ←− f(X̃test)

verify the robustness of the classifier such that

X̃test = Xtest + δ, (7)

where δ ∈ RNtest×d is perturbation for Xtest trained by
adversary,

δ = Attack(Xtest,Ytest, f(X)). (8)

The overall algorithm are shown in Algorithm.1.

4.3. Local Lipschitzness

To evaluate the robustness of a classifier, we adopt L-
Local Lipschitzness as an evaluation metric(Hein & An-
driushchenko, 2017; Yang et al., 2020).

Definition 4.1. A function g : X −→ R is L-locally
Lipschitz around a center point x ∈ X with radius r if
d(x,x′) ≤ r and d

(
g(x), g(x′)

)
≤ L · d(x,x′) ∀x for a

constant L ≥ 0.

Hein & Andriushchenko (2017) proved that local Lipschitz-
ness guarantees robustness which means the classifier’s pre-
diction does not change in a certain range of ball from the
center point for any types of adversarial samples, transfor-
mation, or noise. Yang et al. (2020) suggested an evaluation
metric to measure the robustness of classifier using average
Local Lipschitzness such that

L̂ipϵ =
1

n

n∑
i=1

max
x′
i∈Binf (xi,ϵ)

∥f(xi)− f(x′
i)∥1

∥xi − x′
i∥∞

. (9)

where ϵ is user-specific hyperparameter. Yang et al. (2020)
estimate L̂ip iteratively with projected gradient descent us-
ing step size ϵ/5.
In this paper, we define the final evaluation metric

L̂ip =
1

|E|
∑
ϵ∈E

L̂ipϵ (10)

where ϵ ∈ E = {0.01, 0.02, · · · , , 0.99, 1.0}.

5. Experimental Result
5.1. Dataset

To evaluate the effectiveness of our proposed approach, we
select six publicly available datasets from different domains.
These datasets are commonly used in machine learning re-
search and have been previously used to evaluate the robust-
ness of models against adversarial attacks(Andriushchenko
& Hein, 2019; Moshkovitz et al., 2021; Vos & Verwer, 2021).
Especially, we choose healthcare related dataset only to
show that AADA can be used for constructing robust deci-
sion trees against adversarial attack on patient data.

Drug Consumption Dataset.Drug Consumption dataset
(Dua et al., 2017) contains records from 1,885 respondents
about drug consumption. Each data point has 12 attributes
including the level of education, age, gender, and so on. The
original task is multi classification for 7 classes of whether
and when respondents experienced drugs, but our prediction
goal is abridged whether they consumed cocaine or not.

Heart Disease Dataset. Heart Disease dataset contains 303
instances with 14 attributes such as age, sex, and numerical
values about heart disease. The goal is to predict a patient
has a heart disease.

Others. Diabetes, Mammography, Breast Cancer, and Iono-
sphere datasets are provided by OpenML repository. Pima
Indians Diabetes dataset consists of 768 instances with 8
attributes, aiming to predict whether a patient has a diabetes
or not. Wisconsin Breast Cancer dataset consists of 699
instances with 11 context cytology features. It can be used
to predict breast cancer from cytology features. Mammogra-
phy dataset is also used to predict breast cancer with 11,183
instances with 7 features. Ionosphere dataset is not a medi-
cal related data, but still helpful to be used as a benchmark
tabular data, consisting of 351 instances with 35 features.
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DRUG CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.6090 ± 0.0339 0.6807 ± 0.0475 0.6897 ± 0.0436 0.6891 ± 0.0333 0.6775 ± 0.0407 0.6600 ± 0.0412
ACC. ON ADV. 0.4812 ± 0.0279 0.3575 ± 0.0426 0.3289 ± 0.0389 0.5141 ± 0.0392 0.5088 ± 0.0301 0.5831 ± 0.0409

LOCAL LIP. 11.9611 ± 1.4933 8.0575 ± 0.7961 8.2251 ± 0.8396 8.2968 ± 0.6042 10.4016 ± 0.5916 53.3614 ± 4.7138

ANCHOR

ACC. 0.6249 ± 0.0363 0.6790 ± 0.0391 0.6838 ± 0.0427 0.6849 ± 0.0343 0.6764 ± 0.0435 -
ACC. ON ADV. 0.6127 ± 0.0365 0.6000 ± 0.0330 0.5698 ± 0.0262 0.5575 ± 0.0287 0.5592 ± 0.0255 -

LOCAL LIP. 11.7922 ± 1.2003 7.5474 ± 1.3817 7.3198 ± 0.9736 8.3308 ± 0.6353 10.2115 ± 0.6635 -

HEART CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.7111 ± 0.0934 0.7963 ± 0.0727 0.8148 ± 0.0741 0.8111 ± 0.0651 0.7926 ± 0.0744 0.7481 ± 0.0857
ACC. ON ADV. 0.6444 ± 0.0646 0.4852 ± 0.1079 0.4926 ± 0.0664 0.7185 ± 0.0707 0.6630 ± 0.0452 0.6741 ± 0.0919

LOCAL LIP. 0.0222 ± 0.0294 0.0954 ± 0.1588 0.0549 ± 0.0584 0.0531 ± 0.0676 0.033 ± 0.0475 0.3238 ± 0.1065

ANCHOR

ACC. 0.7222 ± 0.0880 0.8111 ± 0.0749 0.7926 ± 0.0667 0.7778 ± 0.0597 0.7889 ± 0.0760 -
ACC. ON ADV. 0.7185 ± 0.1010 0.7296 ± 0.0923 0.7000 ± 0.0767 0.6407 ± 0.0845 0.6259 ± 0.0607 -

LOCAL LIP. 0.035 ± 0.0491 0.0318 ± 0.0622 0.0393 ± 0.0617 0.0190 ± 0.0306 0.033 ± 0.0475 -

DIABATES CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.6798 ± 0.0563 0.7475 ± 0.0508 0.7696 ± 0.0457 0.7632 ± 0.0545 0.7201 ± 0.0548 0.7228 ± 0.0568
ACC. ON ADV. 0.5195 ± 0.0280 0.2563 ± 0.0513 0.2369 ± 0.0445 0.3683 ± 0.0518 0.4141 ± 0.0558 0.4780 ± 0.0693

LOCAL LIP. 56.4847 ± 11.8601 40.7800 ± 9.6008 38.8410 ± 7.9452 43.7244 ± 9.7973 49.6119 ± 9.1651 122.1606 ± 19.8199

ANCHOR

ACC. 0.6991 ± 0.0414 0.7489 ± 0.0483 0.7683 ± 0.0478 0.7657 ± 0.0456 0.7383 ± 0.0597 -
ACC. ON ADV. 0.6405 ± 0.0673 0.5419 ± 0.0778 0.5052 ± 0.0498 0.4649 ± 0.0513 0.5104 ± 0.0438 -

LOCAL LIP. 53.2102 ± 9.7323 43.9431 ± 13.2394 41.2516 ± 10.0705 43.0882 ± 11.0314 47.3415 ± 10.0376 -

MAMMO CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.7856 ± 0.0362 0.8002 ± 0.0413 0.8033 ± 0.0380 0.7877 ± 0.0433 0.7867 ± 0.0372 0.8044 ± 0.0378
ACC. ON ADV. 0.7003 ± 0.0465 0.7732 ± 0.0408 0.7327 ± 0.0495 0.7576 ± 0.0345 0.7815 ± 0.0305 0.7940 ± 0.0435

LOCAL LIP. 7.1066 ± 12.4130 32.2620 ± 52.4640 4.6179 ± 10.0536 7.8107 ± 12.3759 5.6878 ± 10.3242 361.3532 ± 28.1073

ANCHOR

ACC. 0.7814 ± 0.0342 0.7908 ± 0.0338 0.7877 ± 0.0308 0.7793 ± 0.0359 0.7773 ± 0.0346 -
ACC. ON ADV. 0.7440 ± 0.0542 0.6868 ± 0.0595 0.7066 ± 0.0572 0.6160 ± 0.0428 0.7005 ± 0.0687 -

LOCAL LIP. 17.7274 ± 38.0165 36.1674 ± 52.8626 15.947 ± 38.3866 17.7274 ± 38.0165 17.7274 ± 38.0165 -

CANCER CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.9342 ± 0.0278 0.9605 ± 0.0171 0.9708 ± 0.0160 0.9707 ± 0.0197 0.9678 ± 0.0224 0.9473 ± 0.0209
ACC. ON ADV. 0.8755 ± 0.0336 0.1759 ± 0.0516 0.2371 ± 0.0781 0.5052 ± 0.0927 0.7380 ± 0.0470 0.5334 ± 0.1030

LOCAL LIP. 80.2966 ± 119.8837 38.2902 ± 53.3038 10.0234 ± 16.1989 18.878 ± 30.0236 19.7731 ± 23.6790 424.4295 ± 223.8043

ANCHOR

ACC. 0.9429 ± 0.0221 0.9591 ± 0.0214 0.9591 ± 0.0274 0.9649 ± 0.0238 0.9708 ± 0.0196 -
ACC. ON ADV. 0.9370 ± 0.0227 0.6623 ± 0.1271 0.6517 ± 0.0802 0.7292 ± 0.0600 0.6339 ± 0.1262 -

LOCAL LIP. 33.0955 ± 31.4454 21.6268 ± 35.2081 12.022 ± 17.7957 9.5153 ± 12.7421 25.5842 ± 26.8008 -

IONOSPHERE CART ADABOOST GRADIENTBOOSTING RANDOMFOREST XGBOOST GROOT

BASELINE

ACC. 0.8861 ± 0.0662 0.9144 ± 0.0528 0.9401 ± 0.0393 0.9287 ± 0.0692 0.9287 ± 0.0516 0.8689 ± 0.0575
ACC. ON ADV. 0.7667 ± 0.1073 0.4846 ± 0.0800 0.4813 ± 0.065 0.5725 ± 0.0971 0.5164 ± 0.1127 0.5957 ± 0.0808

LOCAL LIP. 2.3735 ± 1.7265 1.0231 ± 0.6246 0.8008 ± 0.572 0.9712 ± 0.6302 0.9397 ± 0.6926 14.2667 ± 4.5570

ANCHOR

ACC. 0.9117 ± 0.0322 0.9174 ± 0.0563 0.9287 ± 0.0516 0.9344 ± 0.0528 0.9315 ± 0.0546 -
ACC. ON ADV. 0.8860 ± 0.0542 0.8263 ± 0.0756 0.6860 ± 0.0936 0.6890 ± 0.0655 0.6898 ± 0.0721 -

LOCAL LIP. 1.2335 ± 1.0496 0.9215 ± 0.5443 0.7023 ± 0.5855 0.8108 ± 0.5906 0.8100 ± 0.5902 -

Table 1. Experimental Results for AADA with five baseline model and GROOT. The bold results mean the better adversarial accuracy and
smoothness between with and without AADA for each baseline. The blue results mean the best result across the all reported outcome for
each dataset.

5.2. Experimental Setting

We conduct extensive experiments to verify the enhance-
ment of robustness with our proposed method. Five different
models are used including Decision Tree(CART)(Breiman
et al., 1984; Loh, 2011), AdaBoost(Freund & Schapire,
1995), GradientBoosting(Friedman, 2001), Random For-
est(Ho, 1995), and XGBoost(Chen & Guestrin, 2016). We
run 10 experiments for each case and report the mean and
standard deviation. We set the center point ratio γ = 0.1
and the number of points in an anchor p = 5. We compare
test accuracy and Local Lipschitzness on pure test samples
and adversarial test samples for each classifier trained by
pure training samples and augmented training samples re-
spectively. The overall process of experiments is described

in Figure.2

5.3. Result Analysis

We evaluated the effectiveness of our proposed Adaptive
Anchor Data Augmentation (AADA) method on several
decision tree models, including CART, AdaBoost, Gradient-
Boosting, RandomForest, and XGBoost. The experimental
results show that applying AADA to any baseline models im-
prove their robustness against adversarial attacks generated
by the ZOO attack. The adversarial accuracy of the models
is significantly improved compared to their performance
without AADA as shown in Figure.4 and Table.4.2.

In Figure.3, we visualize the decision boundaries and ad-
versraial samples on Diabetes dataset. The visualization is
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Figure 2. A classifier learns a training dataset and is tested on a test subset. An adversarial attack produces adversarial samples on the
learned classifier perturbing the test samples. The test accuracy results on pure test samples and adversarial test samples are expected to
be different if the adversarial attack succeeds. However, as we use AADA on the training dataset, the test accuracy gap between pure test
samples and adversarial test samples will be decreased. Therefore, four different test accuracy will be compared to verify the ability to
make the decision tree robust.

conducted only on two important features in dataset. The
Figure.3 shows that the adversarial attack perturbed the test
samples easily since the decision boundaries are too com-
plex. On the other hand, the proposed method make the
decision boundary smooth and make the adversarial attack
harder. The importance score is extracted by XGBoost.

However, we also observe that the improvement in adver-
sarial accuracy is not consistent across all datasets. In some
cases, AADA does not result in significant improvements,
which suggests that the effectiveness of the method may
depend on the specific characteristics of the dataset and
the baseline model. Nonetheless, our results demonstrate
that AADA can be a promising approach to enhance the
robustness of decision trees against adversarial attacks.

We also evaluate the smoothness of the decision bound-
aries of the models using Local Lipschitzness, which mea-
sures the maximum variation in the model’s output with
respect to small variations in the input. However, we found
that improvements in Local Lipschitzness did not always
correspond to improvements in adversarial accuracy. This
suggests that Local Lipschitzness may not be a reliable in-
dicator of a model’s robustness against adversarial attacks,
and other metrics may need to be considered such as (Chen
et al., 2019b)

Finally, we compare the performance of AADA with another
robust decision tree, GROOT(Vos & Verwer, 2021). Our
results showed that AADA generally outperformed GROOT
in terms of adversarial accuracy and smoothness of the
decision boundaries, demonstrating the effectiveness of our
proposed method.

5.4. Ablation Study

We compare the test accuracy reduction results varying the
number of points p = 5, 10, 20 in each anchor and the
center points γ = 0.1, 0.2, · · · , 0.5 on GradientBoosting
and AdaBoost as shown in Figure.5. The test accuracy
reduction indicates the difference between test accuracy
on pure samples and adversarial samples, where the lower
reduction rate is better. The results shows that the number of
points p in each anchor doesn’t affect significantly. However,
when too many center points are selected such as γ ≥ 0.4,
the reduction rate increase, which means the AADA doesn’t
work well.

6. Limitation
Currently, the AADA is limited to tabular dataset with tree-
based model. AADA can be adopted to any combinations
of data and models such as image on CNN and tabular
dataset on MLP. However, if the decision boundary is not
complex, the AADA might not be works well on Neural
Networks. Moreover, the Local Lipschitzness doesn’t look
proper to reflect the robustness of a model. Fairer robust-
ness metrics are required such as (Chen et al., 2019b). In
addition to, only single attack method and robust model are
considered at this moment. The extensive experiments on
various attack method such as Cheng’s attack, Papernot’s
attack and Kantchelian’s attack and robust decision trees
such as ROCT, BBM-RS are required. Lastly, more mathe-
matical evidence is required to justify the ability of AADA
enhancing robustness of decision tree.
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(a) (b)

(c) (d)

Figure 3. (a) Raw training samples and decision boundary (c) Augmented training samples and decision boundary (b),(d) test samples and
adversarial samples. The upper figures show the decision boundary and adversarial samples on naive training samples, and the lower
figures show the decision boundary for training samples with AADA. The different classes are indicated different colors, yellow and
blue. The red cross points are the adversarial samples for corresponding original test samples. The left figures in (b) and (d) shows the
adversarial attack for class 0 test points, and the right ones for class 1 test points. The decision boundaries in lower figures(with AADA) is
smoother than the upper figures(naive).
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Figure 4. Test accuracy on pure test samples and adversarial test samples w/ and w/o AADA for each tree-based model. In most case, the
accuracy reduction by adversarial attack decrease when the classifier is trained by augmented data.

Figure 5. Ablation study results about test accuracy reduction which indicates the difference between test accuracy on pure samples and
adversarial samples(lower is better) on six different dataset for two different models. The solid line means the results for GradientBoosting
and the dashed line means the results for AdaBoost. Different color means the different number of points p in an anchor.
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7. Conclusion
In this paper, we proposed a novel data augmentation ap-
proach, Adaptive Anchor Data Augmentation (AADA), to
enhance the robustness of decision trees against adversarial
attacks. Through experiments on six benchmark datasets
and five baseline models, we showed that our approach
significantly improves the accuracy on adversarial samples
while maintaining high performance on the original data.
Furthermore, we demonstrated that decision trees trained
with our framework have smoother decision boundaries, as
measured by the local Lipschitzness, compared to models
without AADA.

Our results suggest that the use of anchors with adaptive
radii is an effective strategy to guide the decision tree to
learn smoother decision boundaries, which can improve the
model’s robustness against adversarial attacks. We believe
that our approach can be applied to other types of models
beyond decision trees, and to various real-world applications
where the robustness of machine learning models is critical.

In summary, our proposed method, Adaptive Anchor Data
Augmentation, provides a practical and effective way to
enhance the robustness of decision trees against adversarial
attacks, while maintaining high accuracy on the original
data.
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